The End of the ICE Age

It's time to phase out the Internal Combustion Engine

What does the end of the ICE age mean for (urban) air quality?

ENS* Clean air solutions

Roel Gijsbers

- Projects & engineering
- r.gijsbers@ens-cleanair.com

The Netherlands On Top

- Outdoor air pollution yearly causes 6 to 9 million premature deaths worldwide
- In the Netherlands the average life expectancy is reduced by 11.8 months due to PM2.5
- Researchers have linked air pollution to many adverse health effects and diseases, especially related to (unborn) children, elderly and the most vulnerable

Loss of life expectancy attributed to man-made emissions contributions of PM2.5.

Burden of Disease

- Environmental impact has 4-14% impact on Burden of Disease
- 75% is a result of **air pollution**

The Netherlands towards 2030

- 'Clean Air Deal' 50% health gain in 2030
- Reduction of emissions in mobility, mobile machinery, agriculture, shipping, industry and wood burning for heating.

Health Impact PM

ENS*

Particulate matter (PM) is a mixture of solid and liquid particles suspended in air (=aerosols) Fine Particulate matter can penetrate deep into the lungs and bloodstream.

Adapted from: Gezondheidsraad(2018) Gezondheidswinst door schone lucht

Health Impact PM

Particulate matter (PM) is a mixture of solid and liquid particles suspended in air (=aerosols) Fine Particulate matter can penetrate deep into the lungs and bloodstream.

- The health impact of PM_{2.5} is approx.
 7 times higher than NO₂
- An increase in the PM concentration immediately translates into higher mortality rates.
- Direct correlation between µg / m³
 PM and deaths from heart and lung disease.

EU-28, 2018	PM2,5	NO2	03	
Premature Deaths	379,000	54,000	19,400	
Years of healthy life lost	4,381,000	610,000	232,000	

EEA (2020) Air Quality in Europe

Health costs of PM

- PM is also main contributor to total cost of health impact
- Morbidity, premature mortality and secondary effects
- Exposure leads to Health damage
 - Geography
 - Local emissions
 - Weather influences
 - Urban planning
 - Social situation
 - (international) Policy
 - Local mitigiation measures

Distribution of health damage costs attributed to main pollutants

CE Delft (2020) Health cost of air pollution in EU cities and the linkage with transport

How do we value clean air?

- Long-term effects are harmful and costly. For the Netherlands, these are estimated at € 20 - € 40 billion per year.
- Cost per capita within EU ranges €400 to €3000
- The socio-economic costs average: €1250 per capita
- Equivalent to 3,8% of the European GDP

 Recent studies suggest that long term exposure to PM2.5 is associated with higher COVID-19 mortality rates.

No.	City/urban area	Country	Social costs € mln
1	London (greater city)	UK	11,381
2	Bucuresti	Romania	6,345
3	Berlin	Germany	5,237
4	Warszawa	Poland	4,223
5	Roma	Italy	4,144
6	Metropolia Silesia	Poland	3,596
7	Paris	France	3,505
8	Milano	Italy	3,499
9	Madrid	Spain	3,383
10	Budapost	Hungary	3,272
11	Hamburg	Germany	2,936
12	München	Germany	2.878

CE Delft (2020) Health cost of air pollution in EU cities and the linkage with transport

PM and Covid-19 Risks

Exposure to air pollution increases the risk of infection and the spread of viruses, such as COVID-19. This exposure causes an increase in the number of binding sites for the SARS-CoV-2 virus in the airways, thereby facilitating COVID-19 infection^[1].

Advantages of air treatment^[2]

- Inactivates and removes airborne particles, such as the COVID-19 causing virus (SARS-CoV-2).
- > Reduces the risk of the virus spreading/infection pressure.
- > 1/5 of COVID-19 casualties can be linked to air pollution

[1] Hoffmann-2020 -SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2[2] Hagbom-2015-Ionizing air affects influenza virus infectivity and prevents airborne-transmission

Clean air in Europe during lockdown 'leads to 11,000 fewer deaths'

Study into effects of coronavirus curbs also finds less asthma and preterm births

Lockdown = End of ICE Age?

EEA (2020) Air Quality in Europe KNMI (2020)

•

Average NO₂ pollution level (tropospheric vertical column) for 15 March - 15 April 2019 (left panel) and for the same period in 2020 (right panel)

Lockdown = End of ICE Age?

- Tropomi NO₂-pollution levels for comparable meteorological circumstances
- For long-range transported air pollutants, such as PM_{2.5} and O₃, the lockdown demonstrates a relatively modest air quality improvement

Environmental Pollution Volume 272, 1 March 2021, 116011

Changes in air quality during COVID-19 'lockdown' in the United Kingdom ★

Calvin Jephcote ^a ♀ ⊠, Anna L. Hansell ^{a, b} ⊠, Kathryn Adams ^a ⊠, John Gulliver ^{a, b} ⊠

Show more 🥆

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.envpol.2020.116011	Get rights and content
Under a Creative Commons license	open access

Highlights

- Monthly-average daily traffic counts in April-2020 fell by 69% compared to April-2019.
 - NO₂ and PM_{2.5} concentrations fell respectively by 38.3% (8.8 μg/m³) and 16.5% (2.2 μg/m³).
 - + O_3 increased by 7.6% overall as the atmospheric chemistry changed.
 - $\rm NO_2$ and $\rm PM_{2.5}$ improvements were largest at urban traffic sites.
 - Weather conditions contributed to particulate episodes that were seen despite traffic reductions.

Distribution of emissions in the EU (2018)

• Contribution of traffic related PM in city centres can (locally) add up to 30%

EEA (2020) Air Quality in Europe

FNS¥

Exhaust vs. Non Exhaust emissions

Reduction of fossil fuels – exhaust emissions: EC, NO2 & PM

- Elemental carbon (EC) emissions decrease significantly with new regulations
- By 2030 EC (harmful component of PM) is minimized

RIVM 2015 Luchtkwaliteit en gezondheidswinst

Exhaust vs. Non Exhaust emissions

Internal Combustion Engines

- Substantial improvement on PM and EC (Soot)
- Mainly non-exhaust emissions

	Exhaust (mg/vkm)		Non-Exhaust (mg/vkm)			
Car Type	PM ₁₀	PM _{2.5}	Soot	PM ₁₀	PM _{2.5}	Soot
Petrol (EURO 5)	1	1	0.2	30	17	2.7
Diesel (DPF, EURO 5)	4	4	0.8	30	17	2.7
Diesel (no DPF, EURO 2)	62	62	50	30	17	3

DPF, diesel cars with particulate filter.

Timmers, Achten (2018) Chapter 12: Non-Exhaust PM Emissions From Battery Electric Vehicles, in: Amato (Ed.), Non-Exhaust Emissions, An urban air quality problem for public health impact and mitigation measures, Elsevier

Exhaust vs. Non Exhaust emissions

No exhaust PM contributions from electric vehicles

Vehicle Technology	Exhaust (mg/vkm)	Tire Wear (mg/vkm)	Brake Wear (mg/vkm)	Road Wear (mg/vkm)	Resuspension (mg/vkm)	Total (mg/vkm)
EV	0	7.2	0	8.9	49.6	65.7
Gasoline ICEV	3.1	6.1	9.3	7.5	40	66.0
Diesel ICEV	2.4	6.1	9.3	7.5	40	65.3

Timmers, Achten (2018) Chapter 12: Non-Exhaust PM Emissions From Battery Electric Vehicles, in: Amato (Ed.), Non-Exhaust Emissions, An urban air quality problem for public health impact and mitigation measures, Elsevier

End of the ICE age

- Increase in electric vehicles
- Increase of road transport
- Non-exhaust emissions 50% increase

PM2.5 emission in kilotons as a result of NL policy

RIVM 2015 Luchtkwaliteit en gezondheidswinst

ENS*

ENS Clean Air Solutions | 21-4-2021

The effect of air quality measures

Focus on monitoring, behavioral change, sustainable mobility, (re)design of public space

- Encouraging electric transport or ULEZ zones is a good step to reduce local emissions, especially with regard to No_x and EC.
- Greening has several advantages, but it is not very effective on its own and is sometimes counter-productive.

Vos, P.E.J., Maiheu, B., Vankerkom, J., Janssen, S. (2013). Improving local air quality in cities: To tree or not to tree? Environmental Pollution, 183, pp. 113-122.

Urban Clean Air Strategy

Improvement of living environment & air quality

- 1. Source treatment: minimize local emissions
 - Enhance behavior change
 - Stimulate Public Transport
 - Electrification of mobility
- 2. Reduce exposure at public 'hotspot locations'
 - Intervention strategies (LE zones, rerouting of traffic)
 - Mitigation measures
 (natural / technical)

Positive Ionization Technology

The electric field charges the airborne particles which then move towards the grounded collector plate. The pollutants are immobilized and transform into a layer of coarse dust.

Lungs of the City

Active air treatment integration in existing infrastructure to improve urban air quality for city residents by cleaning polluted hotspots such as:

- Underground Parkings
- Public transport
 - Metro stations
 - Bus terminals
- Public Buildings
- Street furniture
- Tunnels

Metro stations

Μ

Parking

Ρ

В

Bus stops

ENS Clean Air Solutions | 21-4-2021

Lungs of the City

ENS*

• Lungs of the City is a unique approach to PM mitigation with a cumulative effect on an urban scale

ENS*

Lungs of the City

• A combination of practical applications and scientific effect studies prove the effectiveness of the solution with measurement data and CFD simulations

Blocken, *et al*: "Reduction of outdoor particulate matter concentrations by local removal in semi-enclosed parking garages: A preliminary case study for Eindhoven city center," *Journal of Wind Engineering and Industrial Aerodynamics* (December 2016): http://www.sciencedirect.com/science/article/pii/S0167610516304536.

Lungs of the City

- A combination of practical applications and scientific effect studies prove the effectiveness of the solution with measurement data and CFD simulations
- The results show that wide application and smart integration enable a PM reduction of up to 50% PM10 at street level.

Lauriks, et al. (2020) Application of Improved CFD Modeling for Prediction and Mitigation of Traffic-Related Air Pollution Hotspots in a Realistic Urban Street, Atmospheric Environment 246 (2021) 118:127 <u>https://doi.org/10.1016/j.atmosenv.2020.118127</u>

ENS Clean Air Solutions has been awarded with the Solar Impulse Solution Label

YOUR SOLUTION TO AIR POLLUTION

Ce s

partic (PM

Par écol cont qual co

CO

Un poumon dans la ville

ENSX Clean air solutions

+31 (0) 486 423 378
info@ens-cleanair.com
www.ens-cleanair.com